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Figure 8. Modulation of tonic and phasic activities by magnesium concentration (mM) under different maximal synaptic conductances (mS/cm2), λ = 0. 
(A1-F1) Tonic activity. (A2-F2) Phasic activity. Variations of INMDA are shown in the bottom of each subgraphs, and the zero value of INMDA was adjusted to –80.
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As 2 widely observed firing behaviors in neuronal systems, 
tonic and phasic firing activities have been found in neurons 
from different brain regions.12-20 The functional roles for these 
2 behaviors have also been subject to intensive investigations 
during the past decades. For instance, they possess prominent 
effects in the encoding of reward and punishment signals,35,36 
modulation of conditioned fear behaviors,37 occupation of 
dopamine receptors,38 mediation of behavioral conditioning,39 
and synaptic plasticity.40,41 Since tonic and phasic firings encode 
important neural information, the underlying mechanisms 
should be clarified. Based on our model results, we infer that in 
RGCs, 2 currents, i.e., the inactivating sodium current and the 
delayed-rectifier potassium current, contribute collectively to the 
occurrence of tonic and phasic activities. Similar conclusions have 
been drawn in CA1 pyramidal cells, in which it was shown that 
tonic activity is triggered by the concerted actions of transient 
sodium currents and delayed-rectifier potassium currents.30 
However, an important distinction is that the sodium current we 
used in the RGC model is responsible for adapting activities of 
ganglion cells, whereas the sodium current in the CA1 pyramidal 
cell model does not induce adapting behaviors of pyramidal 
cells. Nevertheless, Bianchi et al.30 also reported that adaptation 
currents in the pyramidal cell model exhibit some regulatory 
roles in the tonic activity, consequently, the inference we draw 
that two adaptation currents (inactivating sodium current and 
delayed-rectifier potassium current) contribute collectively to 
the generation of tonic and phasic activities in the RGCs, is 
reasonable.

Although our modified model has many good features, there 
is still a disadvantage that the model fails to reproduce the effect 
of I

A
 on influencing the adapting activity of RGCs. Weick and 

Demb6 applied 4-AP to specifically block I
A
, however, other 

studies have shown that 4-AP cannot only block I
A
, but can 

also affect calcium channels,42 calcium-dependent potassium 
channels,43 and sodium channels.45 Thus, the effect of 4-AP may 
be more general and diffuse. In our model, we only altered the 
activation of I

A
, and this might be the reason that our model 

result is inconsistent with the experimental observation.

NMDA receptors are a major receptor participating in the 
synaptic transmission of neural signals, and many neurons 
in the brain have already been found to express this receptor, 
e.g., midbrain dopaminergic cells,34 hippocampal pyramidal 
neurons,45 and RGCs.20-22 The roles of magnesium ions in the 
activation of NMDA current have also been widely reported.31-33 
Thus, changes of magnesium concentration would lead to 
corresponding variations of NMDA synaptic current with 
subsequent influences on the firing behavior of postsynaptic 
neurons. In our model study, we find that magnesium 
concentration effects embedded in the NMDA synaptic current 
are vital in regulating the tonic and phasic activities of RGCs, 
and that the regulation is rather different for the 2 firing 
patterns.

As the sole output neurons in the retina, the activities of 
ganglion cells have attracted much attention for their significant 
roles in the encoding and transmission of visual signals, which 
may be manifested in a variety of firing patterns. The modified 
model we proposed in this study has successfully reproduced 
several firing behaviors, thus, it can be used as a good basis for 
simulating some other firing patterns, and to further uncover the 
possible mechanisms that may mediate those firing patterns.

Models and Methods

The model we proposed in this study was integrated from 
the FCM model and the KR model. Similar to the FCM model, 
our model mainly contains 5 voltage-gated ion channels, i.e., 
inactivating sodium (I

Na
), delayed-rectifier potassium (I

K
), 

calcium (I
Ca

), A-type potassium (I
A
), and calcium-activated 

potassium (I
KCa

) channels. The expressions and parameters for 
the ion channels were adopted from the FCM model,5 except for 
the inactivating sodium channel which was adopted from the KR 
model.8 In the last part of our study, the effects of synaptic input, 
particularly the NMDA-type was considered, and the expression 
of I

NMDA
 was adopted from reference 23.

Detailed description of the modified model is as following:

Figure 9. Variations of spike counts with respect to gNMDA under different magnesium concentrations. (A) Tonic activity. (B) Phasic activity.
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(1)
where, C

m
 = 1 μF/cm2 is the specific membrane capacitance, I 

is the stimulus current applied to the neuron. ξ(t) is the Gaussian 
white noise, with zero mean, and 

δ(τ) is the delta function, λ is the noise intensity.
Specific expressions and gating variables for each currents are 

illustrated in Box 1, where g
Na

, g
K
, g

Ca
, g

A
, g

KCa
, g

L
 are the maximal 

conductances for the corresponding ion channels, and their 
values are: 80, 12, 2.2, 36, 0.05, and 0.05 mS/cm2 respectively; 
V

Na
, V

K
, V

Ca
 are the equilibrium potentials, and the values for 

V
Na

, V
K
 are 35, -75 mV respectively, while the value of V

Ca
 is time-

dependent (Eq. 2).

	 (2)

where R = 8.314 J/(M·K ) is the gas constant, T = 295 K is the 
temperature in Kelvin, Z is the ionic valency, F = 96485 C/M 
is the Faraday constant, [Ca2+]

e
 = 1.8 mM is the concentration 

of extracellular calcium ions, and the variation of intracellular 
calcium ion concentration [Ca2+]

i
 obeys the Equation 3.5

	 (3)

where r = 22 μm means the depth of the shell beneath the 
membrane for the calcium pump, and τ

Ca
 is the time constant for 

calcium current, which value is 1.5 ms. The residual level of the 
free intracellular calcium ions is [Ca2+]

res
 = 0.001 mM, and the 

calcium dissociation constant is [Ca2+]
diss

 = 0.001 mM/dm3.
In the expression of I

Na
, s

1
 and s

2
 are 2 slow variables which can 

mimic the inactivation of I
Na

. As reported by Kim and Rieke, s
1
 is 

voltage-dependent, while s
2
 is spike-dependent.8

The voltage-dependent gating variables are described below:

	 (4)

And the spike-dependent slow variable s
2
 is described by the 

following equation:

	 (5)

Except when the neuron fires a spike, the variable s
2
 should be 

decreased by a factor of 0.77.8

In the expression of I
NMDA

,  is the synaptic conductance, 
and V

NMDA
 is the synaptic reversal potential, which is 0 mV. g

NMDA
 

is the maximal conductance, and [Mg2+] is the extracellular 
magnesium concentration.

Simulations of the RGCs activities were performed in the 
MATLAB environment (R2010a), and the fourth-order Runge-
Kutta algorithm was employed to calculate the voltage values of 
RGCs with time step of 0.01 ms.
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